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Abstract: We have used classical trajectory analysis with Monte Carlo event selection to study the cage efficiency 
associated with photolysis of a diatom in a solvent of spherically symmetric molecules. For I2 in CCl4, our results 
are in adequate agreement with laboratory experience. We find that recombination efficiency is highest when re
coil energy is low, solvent molecules are large, and intermolecular attractions are appreciable. The mass of the sol
vent molecule is not an important factor by itself. Cage recombination appears to be primarily a direct mechanical 
effect rather than a diffusive one. The reasons for these findings and for the failure of simple theoretical models are 
discussed. 

In this work we have made an application of classical 
Monte Carlo trajectory methods. These tech

niques are well established, and very useful, in the study 
of non-Boltzmann kinetics in the gas phase. We began 
their extension to energetic processes in condensed 
phases with an investigation of nuclear recoil phenom
ena in inorganic phosphate crystals.1 The research 
being reported here is our first venture into solution 
chemistry. 

The problem we have chosen for this exploratory 
study has a long and interesting history. The sugges
tion that quantum yields for photolysis of solutes would 
be lower than for the same substances in the gas phase— 
a cage effect, arising from loss of energy to nearby sol
vent molecules—seems to have originated with Franck 
and Rabinowitch2 in 1934. The simplest and most 
popular system for attempted demonstrations of this 
has been I2 in CCIj, which also figures in this study. A 
cluster of measurements3-5 in the 1950's showed by a 
variety of methods that in CCl4, I2 photolysis in the vis
ible range of its absorption spectrum has <j> = Ve-1A 
(0 = quantum yield, 1 for gaseous I2, 0.08 in hexachlo-
robutadiene and 0.6 in hexane3). As was expected, 
escape from the solvent cage was found to be more effi
cient at shorter wavelengths.5,6 Studies3,5-7 of the 
effects of solvent density, viscosity, etc., have been some
what hampered by the fact that nature does not provide 
a selection of liquids among which these effects can be 
easily separated. Only in the work of Lyon8 in the 
region of the critical point has a preliminary attempt 
been made to isolate a single independent solvent vari
able (density). Nevertheless, there has been some indi
cation, on both experimental and simple theoretical9 

grounds, that heavy solvent molecules might make a 
more effective cage. 

The idea of a possible distinction between primary 
and secondary cage effects appears to have first been 
advanced by Noyes.10,n A primary cage effect is one 
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(1970). 

(2) J. Franck and E. Rabinowitch, Trans. Faraday Soc, 30, 120 
(1934). 

(3) F . W. Lampe and R. M. Noyes, J. Amer. Chem. Soc, 76, 2140 
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(8) R. K. Lyon, ibid., 86, 1907 (1964). 
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in which the photofragments remain almost within 
bonding distance of one another until they lose enough 
energy to recombine. The secondary effect is diffusive 
in nature. The fragments initially separate to some 
distance but later find each other again. The viscosity 
of the solvent would affect the details of this, if the sol
vent is thought of as a continuous medium. In our 
work the solvent is composed of discrete particles, and 
we focus attention on the intermolecular forces rather 
than on the bulk viscosity. Obviously, there will be a 
somewhat ill-defined middle ground between these two 
kinds of recombination. Our convention for distin
guishing them precisely will be described later. 

Attempts to learn something about solvent cages by 
simulation with models, as we have done here, also date 
from early times. Rabinowitch and Wood,9 in 1936, 
did a simple two-dimensional analog experiment with 
balls on a shaker table. With sufficient ball density, 
they observed groups of repetitive collisions thought to 
be characteristic of photochemical cage behavior, 
Only the ball number density was varied, not the size or 
mass (or of course the interball forces). Later models 
have concentrated on the diffusive aspects of the prob
lem. There have been an analytical study by Noyes12 

in 1950 and a 1971 computational simulation by Walling 
and Lepley,13 each involving photofragment motion on 
a point lattice. Both models are discussed in the later 
paper, and the investigators all express some misgivings 
about the sole adequacy of bulk properties like viscosity 
for the description of the molecular caging process. 

This paper returns entirely to the molecular point of 
view. Using techniques adapted from the study of gas 
kinetics, we are able to simulate a photochemical recoil 
event in a solvent cell of minimally reasonable size in a 
few minutes on a moderately fast digital computer. 
Groups of up to 50 events for each parameter combina
tion are feasible, and all the variables mentioned above 
are under direct and individual control. 

Our first aim was to see whether we could observe and 
distinguish between the primary and secondary cage 
effects. All other effects of solvent parameter variation 
that might prove to be within our means were also slated 
for study. As will be seen, we have had mixed fortunes 
with these. 

(10) R. M. N o y e s , / . Chem. Phys., 22,1349 (1954). 
(11) R. M. Noyes, / . Amer. Chem. Soc, 77, 2042 (1955); see also 

Progr. React. Kinet., 1,129 (1961). 
(12) R. M. Noyes,J. Chem. Phys., 18,999 (1950). 
(13) C. Walling and A. R. Lepley, Int. J. Chem. Kinet.,3,97 (1971). 
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Figure 1. Projected typical motions of solvent particles during a 
reaction event, including the melting phase (dashed lines). One-
third of the solvents, initially located in a plane, are shown. The 
circles have arbitrary size and represent the solvent configuration at 
the beginning of the reactive part of the trajectory. 

Methodology 

The general method is as described previously.1 

New features that need discussion here are the boundary 
conditions on the solvent cell, the selection of initial 
positions and momenta, and the interaction potentials 
between the various particles. 

The physical model we had in mind for a starting 
point was I2 dissolved in CCl4, with CCIi considered as 
a spherically symmetric, structureless particle. We 
treated a cubical box with a 14-A edge, containing 26 
solvent molecules. This corresponds to the real CCl4 

density. Since there are also two Fs, this makes alto
gether (6)(28) = 168 of Hamilton's equations, solved 
numerically to obtain the complete details of the motion 
of the system. 

At first we intended to impose periodic boundary 
conditions on the solvent particles. These, which are 
much used in computational studies of liquid physical 
properties, transpose a particle leaving the box to a dia
metrically opposite point and let it reenter with its vec
tor velocity unchanged. But this turned out to intro
duce unwelcome correlation effects in our rather small 
system (e.g., sometimes both I's would collide with the 
same solvent molecule, before and after its reentry). 
We found that a more satisfactory procedure is simply 
to make the walls of the box specularly reflect the centers 
of the solvent particles. We estimate that about 100 
solvent molecules would need to be present before 
periodic boundary conditions would be the method of 
choice. 

Initially, the I2 is oriented along a body diagonal of 
the cube. Random, one at a time insertion of solvent 
molecules is too time consuming to be practical, so in
stead we start with a solid solvent and "melt" it. An 
orderly array of solvent molecules is set in motion, with 
each molecule having the same magnitude of velocity 
vector, but with random vector orientations. The 
magnitude corresponds to the average thermal energy 
at room temperature. After a time it is found that sol
vent positions have become randomized and that the 
corresponding momentum distribution has attained 
constant shape. At this point the event proper begins. 
The I's are propelled apart with prescribed energy, and 
the subsequent motion is followed until one of them 
escapes the box or until one of the other end conditions 
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Figure 2. The four intersolvent potentials used in the work. 

(described below) is recognized. Figure 1 shows typi
cal solvent motions during the entire event. 

We used several interaction potentials in this work. 
I-I always interacted according to the conventional 
Morse function. For 1-CCl4, we ordinarily used the 
Lennard-Jones potential 

U = 4«[(<r/>\>12 - (cr/rf] (1) 

with o- = 4.968 A and e = 274A: (A: = Boltzmann's con
stant). These values are obtained if I is equated with 
Xe and the usual averaging methods (arithmetic for cr 
and geometric for e) are employed.14 For the very 
numerous inter-CCl4 interactions, the Lennard-Jones 
potential was much too costly; we had to avoid rou
tinely evaluating its derivatives. We approximated it 
with a piecewise function with continuous first deriva
tives, constructed as follows. The Lennard-Jones 
function is used from r = 0 to r = rm (the minimum 
point of eq 1). From rm to a cutoff point rc, the poten
tial is 

U= a + pr + yr* + 8r3 (2) 

Requiring that U be continuous at rm and that first de
rivatives vanish at rm and rc leads to 

a = e/-c
2(3rm - rc)frre - /V)3 (3) 

/3 = -66rmrc/(rc - r j > (4) 

7 - 3«(rm + re)/(re - rm)s (5) 

5 = -2«/(rc - O 3 (6) 

The exact and imitation Lennard-Jones potentials are 
compared in Figure 2 (the solid lines). The computa
tional virtue of the imitation potential is that r > rc can 
be detected by simple tests, and much time is saved. 

Two other potentials were introduced in the course of 
studying the sensitivity of the cage effect to solvent pa
rameters. These will be described later. 

Classification of Events 
Besides other kinds of outcome, we found ourselves 

able to recognize four types of recombination event. 
Recombination in general was detected if the two Ts 
were within Morse range of one another and without 
enough energy for dissociation. 

(14) J. O. Hirschfelder, C. F. Curtis, and R. B. Bird, "Molecular 
Theory of Gases and Liquids," Wiley, New York, N. Y., 1954, pp 1110-
1112. 
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Figure 3. Projected typical I motions corresponding to the four 
kinds of recombination trajectory: immediate primary, Pi; pri
mary, P; delayed primary, PD; and secondary, S. 

All the different kinds of event are tabulated, assigned 
symbols, and described here. 

E is escape. One of the Fs left the box. 
N is no decision. A pretested molecule-time limit 

was exceeded without any other end test being met. 
The trajectory calculation could not be accurately con
tinued. The I's were diffusing through the solvent at 
some appreciable distance from one another. 

P is the uncomplicated primary cage effect. The I-I 
distance increased, attained a single maximum, and de
creased again with bond formation. 

P1 is a more immediate cage recombination in which 
the recombination test was met before the I-I distance 
reached its maximum. 

PD is a delayed cage effect in which the I-I distance 
attained its equilibrium value more than once before 
recombination was detected. This indicates that I re
mained in the cage but required more than one excursion 
from its initial position for I2 to become stabilized. 

S is the secondary cage effect. At least one shallow 
minimum occurred at relatively large values of the I-I 
distance. For the I-I distance to begin decreasing and 
then increase again, a solvent particle must have inter
vened between the I's. Nevertheless the I eventually 
recombined. The program was also able to detect 
SD, which is similar to PD in that more than one equilib
rium value of the I-I distance occurred, but none of 
these events were found. 

In Figure 3, the four kinds of recombination trajec
tory (P, P1, Pn, S) are illustrated. AU but P1 may in
volve fairly disorderly motion; the character of the mo
tion does not furnish a definitive method of trajectory 
classification. Our restriction of the label secondary to 
events with solvent intervention is arbitrary, but it rep
resents a clean distinction whose physical meaning is 
not in doubt. 

Results 

We present our results in the form of correlation 
charts. The maximum value attained by the I-I dis
tance is plotted against the molecule time that elapsed 
before recombination was detected. The various kinds 
of outcome described above are indicated on the charts, 
along with an accounting of the number of E and N 
trajectories, if any. 
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Figure 4. Results for photolysis of I2 in CCh at 7500 and 6733 A. 
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Figure 5. Results for photolysis at 6077 and 5000 A. This is a 
continuation of Figure 4. 

The Effect of Recoil Energy. In Figures 4 and 5 the 
results are shown for four I-I recoil energies. The 
highest, about 20 kcal/mol, corresponds to the largest 
value possible in the laboratory for dissociation into 
electronic ground states of I atoms—photolysis at 
about 5000 A. The others are roughly 11 (6077), 7 
(6733), and 2.5 kcal/mol (7500 A). 

It is clear that the primary cage is smallest (6 A) at 
7500 A and largest (7.5 A) at 5000 A. The cage is well 
within the solvent box and wall effects could not have 
been very appreciable on the time scale of the calcula
tions. The number of collisions in the cage required 
for stabilization is certainly increasing as wavelength 
drops, and Pi events are absent at high recoil energy. 
Still more interesting is the disappearance of the secon
dary effect at high energy. Presumably, this is because 
of high residual velocity and persistence of direction of 
motion of the high energy fragments. The three secon
dary events at the lowest energy appear to be a lower 
limit, since two of them were very long-lived, but count
ing the three N as probable S would still not raise the 
secondary effect to predominance. Although it is a 
statistically noisy number, the three E + three N re
sults in 30 tries seem adequately consistent with the lab
oratory data.3-5 

Since the cost of a trajectory is proportional to its 
length, it should be easy to see why we preferred to 
standardize on the 7500-A results rather than the 5000-A 
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ones, for comparison with further calculations. For 
the sake of learning something about the effects of sol
vent parameters, we next both tampered with the prop
erties of CCl4 and abandoned spectrophotometry real
ism for I2. 

Solvent Mass. Contrary to expectations, the effect 
of changing only the mass of the solvent molecule is 
very slight. An eightfold range of variation is shown 
in Figure 6, along with Figure 4a, which should be 
interpolated between Figures 6a and 6b. The correla
tion between lifetime and maximum separation is cer
tainly smoothest at the lowest solvent mass, and the 
absence of secondary effects in the same data (Figure 
6c) may or may not be significant. All other differences 
are definitely within the noise level of the computational 
experiments. 

Molecule Size. On the other hand, the effect of 
changing the relative sizes of I and CCl4 is rather strik
ing. In Figure 7 we have shrunk I2 by a factor of 2, 
leaving CCl4 unchanged—this method having been 
chosen to avoid changing the box size. The caging 
process is dramatically less efficient. This experiment, 
if we had scaled the CCl4 radius up rather than that of 
I down, would clearly involve a relative decrease in the 
mass density of the solvent. This suggests that the lab
oratory phenomena apparently arising from heavy sol
vent molecules may in reality be related to concomitant 
mass density (and, indirectly, size) effects. The diffi
culty of interpreting results for a series of real solvents 
with several simultaneously varying properties is well 
illustrated here. 
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Figure 8. Results at 7500 A for alternate potentials. Compare 
Figure 4a. 

We would have liked to study the opposite case, a 
large dissociating molecule in a swarm of small solvent 
particles, but this would have required treating an im
possibly large number of atoms.15 

Intermolecular Potentials. For the data in Figure 
8a, we replaced the Lennard-Jones repulsion from r = 0 
to r = rm (eq 1), for both solvent-solvent and solvent-I 
interactions, with a quadratic function. The quadratic 
had zero slope at rm and a curvature calculated from the 
known vibrational properties of the C-Cl bond in CCl4. 
The change, which is less pronounced than we expected, 
is illustrated by one of the dashed lines in Figure 2. 
The effect of this was to change the character of the re
combination events—more P n . less Pi; compare Figure 
4a—without changing the overall efficiency of the pri
mary cage very much. 

When we used the parabolic repulsion alone, with its 
slope set to 0 at r = 0 (also shown in Figure 2), we ob
tained Figure 8b. The character of the results is fairly 
strongly changed, and the cage is definitely leakier than 
before. Possibly this reflects a somewhat lower space
filling efficiency of the solvent; this is further discussed 
in the Appendix. It is difficult precisely to compare 
purely repulsive potentials and ones with an attractive 
region. 

The suggestion is that gross changes in the intermo
lecular potentials are probably detectable at the lab
oratory level, but that small ones like the variation be
tween Figures 4a and 8a are likely to show up only at 
the level of computational experiments. 

Discussion 

Because of economic limitations, we have left many 
things undone. We would have particularly liked to 
carry out the parameter comparisons with the more ex
pensive trajectories corresponding to 20-kcal recoil en
ergy. Also we might have studied the effects of the 
I-I bonding energy, and those of having photofrag-
ments with unequal masses. Much more can be done 
with this kind of computational experiment. 

Our most striking finding is surely the relative unim
portance of truly diffusive effects, involving solvent in
tervention, under all conditions. The low recoil en
ergies we used should have made these effects promi-

(15) Likewise, experiments on the degree of space filling by the sol
vent were ruled out because we could not bring the calculation into an 
economical range. 
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nent if they are real. We concur strongly with a sug
gestion first made by Rabinowitch16 and reinforced by 
Noyes12 that once as many as two solvent molecules 
partly intervene between the photofragments, their re
union becomes highly unlikely. We would say that 
one intervening molecule is sufficient. 

The studies of the effect of solvent size, mass, etc., 
that we have been able to make do not completely il
luminate the situation. More work on a larger com
puter is needed. We do believe, however, that the 
mass of the solvent molecule has been overemphasized 
as a determinative parameter. 

Our data on the effects of intermolecular forces are 
our least definitive, since these will surely become less 
important with higher recoil energy. We have estab
lished that under at least some conditions, alternative 
assumptions about the forces may lead to observable 
differences in predicted behavior. 

On the whole, we conclude that a molecular descrip
tion of the caging process will be preferable to one that 
treats the solvent as a continuous medium. On the 
other hand, it is fairly easy to show that a simple treat
ment based on the rigid-sphere radial distribution func
tion and the character of the first collision will be in
adequate. (Such a calculation is outlined in the Ap
pendix. We have placed it there, with only enough 
detail to identify the arguments used, because its prin
cipal interest arises from its failure.) These simple 
rigid-sphere collisional considerations would suggest— 
not unexpectedly—that the solvent mass should be the 
principal parameter of interest, with the space-filling 
efficiency playing a secondary role. The detailed pre
dictions match neither the laboratory evidence nor the 
Monte Carlo results. 

The difficulty appears to be that even though cage 
recombination involves a single smooth maximum in 
the I-I separation, there are not one but several struck 
solvent molecules. Thus, as we have verified by in
spection of the trajectories, practically all solvents have 
high net momentum-carrying capacity and behave as 
if they were made of massive molecules. The labora
tory case of hexane as solvent is not necessarily an ex
ception to this; the details are discussed in the Ap
pendix. 

To make a theory, then, we would have to consider 
neither the first photofragment-solvent encounter nor 
the bulk solvent properties, but a messy intermediate 
situation in which the permeability of a cluster of sev
eral particles to an energetic fragment is of interest. 
Until this can be accomplished and the solvent para
metric dependences unscrambled, it seems likely that the 
kind of empirical calculation we have done will be the 
most attractive route to further information. 

Acknowledgment. We are grateful to the National 
Science Foundation for supporting our work. 

Appendix 

The radial distribution function is g(r), with r a re
duced variable; for fragment (A) and solvent (S) rigid 
spheres of not too dissimilar size, it can be taken as 

r = x/x0; X0 = V2(O-A + Os) (7) 

Here x is the interparticle distance and the cr's are di

ll 6) E. Rabinowitch, Trans. Faraday Soc, 33,1225 (1937). 

ameters. The probability of finding an individual 
particle at a reduced distance r is 

(4TXoyV)r>g(r)dr (8) 

Since g(r) oscillates around unity, this is normalized 
with respect to integration over a macroscopic con
tainer of volume V. The oscillations damp out rapidly 
with increasing r. The first minimum in g(r) approx
imately bounds a first coordination sphere—best de
fined at high densities—and subsequent minima cor
respond to additional short-range order. 

The average number of particles in the first layer, 
«i, can be obtained by integration of (8) between r = 
1 and r for the first g(r) minimum. By geometric con
struction, the solid angle subtended by a solvent par
ticle is 

Q - 2TT[1 - (1 - 1/r)*] (9) 

and this can be multiplied by (8) and integrated over 
the same range to give an average value (Q,). These 
integrations were done graphically from the g(r) cal
culated and tabulated by Kirkwood, Maun, and Alder, 
hereafter called KMA.17 It was found that nx is about 
15 under conditions corresponding to Figures 4-8. 
Thus our simulation includes all of the first coordina
tion shell and a portion of the second. 

The quantity ni(ft)/4ir, in the absence of target par
ticle overlap, should approximate the probability of A 
failing to escape the first coordination shell without 
striking an S. From the above integrations, it is 
(within ±10%) 

K1(Q)IAT = 2.5x»3plM a* (5/16)p(aA + «78)»/Af (10) 

In eq 10, the density p and the molecular weight M 
enter because of the V factor in (8), and the o-'s are in 
angstroms. The value of this expression is near 3 
for I2 in CCl4, and greater than 1 in nearly all practical 
cases. This indicates that direct interstitial escape 
is usually impossible and that A always strikes one of 
the nearest-neighboring particles. Equation 10 could 
be used as a crude estimate of the probable number 
of S encountered. (For the data of Figure 7, this quantity 
is greater or less than 1 depending on how rigid-sphere 
diameters are estimated from Lennard-Jones param
eters. It is possible that interstitial escape is a factor 
in these results.) 

Given that an encounter is certain, we can calculate 
the probability that the A energy associated with mo
tion radial with respect to the recoil site will be reduced 
in one collision below a stabilization threshold ET. 
Let vA be the initial A velocity (vector), vs be the final 
solvent velocity, vc be the component of final A veloc
ity antiparallel to vs, and vL be the normal component. 
The conservation laws are 

(17) J. G. Kirkwood, E. K. Maun, and B. J. Alder, J. Chem. Phys., 
18, 1040 (1950); see also I. Z. Fisher, "Statistical Theory of Liquids," 
University of Chicago Press, Chicago, IU., 1964, p 146. The notational 
difficulties may be unscrambled as follows. KMA use x where we and 
Fisher write r. The parameter X*(Fisher) = ViMKMA). For the 
theoretical relationship between X or X* and the diluteness factor c/"o, 
we used the table supplied by Fisher. The average volume available 
to a particle is v. Fisher (and we) let Do = Vs^o-s3, the actual volume of 
a sphere, whereas KMA define co as the volume attributable to one 
sphere in a face-centered cubic lattice. Radial distribution functions 
are also available for Lennard-Jones fluids (see Fisher, p 323), but their 
use would introduce heavy computing requirements into an otherwise 
simple problem. 

Bunker, Jacobson j Photolytic Cage Effect 



1848 

™A*A
 = mA(yL + vc) + ™s*s 

V2^AVA2 = V2WA(V1. + Vc)
2 + V2WsVs2 (11) 

The projection of vc on vA is 

PR = vA ' (vc + v L ) K = ±(2ET/rnAy/"- (12) 

where the second equality gives the bounds within which 
stabilization will occur. By introducing the angle 9 
between vA and the initial A-S line of centers and in
tegrating sin 8 with limits given by the simultaneous 
solution of (11) and (12), we can find the probabilities 
for reversal, stabilization, and continued outward 
motion of A. 

The reversal probability is 

PK = 

! - [ ( ! - lAa) + (mA + W3)(I + E^/E^Hms)]1/' 
1 - (1 - 1/V2)'A 

(13) 

in which EA is the A recoil energy. Unless 

2ms/(mA + IM8) > r\\ + ET^IEA
lh) (14) 

PR is 0. The probability of stabilization, P s , is the differ
ence between the square root in the numerator of eq 
13—or 1, if P R is 0—and the same square root with 
£"T

Vl replaced by — ET
l/\ with the result normalized by 

the same denominator. It fails to exist unless 

2ms/(mA + /Ms) > r\\ - ET^jEA
h) (15) 

Linear enthalpy-frequency shift relationships have 
-* been reported for phenol,2 1,1,1,3,3,3-hexafluoro-

2-propanol3 (HFIP), 2,2,2-trifluoroethanol4 (TFE), 

(1) National Science Foundation Research Trainee, 1970-1971; 
abstracted in part from the Ph.D. thesis of A. D. Sherry, Kansas State 
University, 1971. 

(2) T. D. Epley and R. S. Drago, J. Amer. Chem. Soc., 89, 5770 
(1967). 

(3) K. F. Purcell, J. A. Stikeleather, and S. D. Brunk, ibid., 91, 4019 
(1969). 

(4) A. D. Sherry and K. F. Purcell, J. Phys. Chem., 74, 3535 (1970). 

An average value (r), for approximate use in these 
expressions, can be constructed from the KMA data 
by setting eq 9 equal to (fl). Some extrapolation 
from the KMA computational range may be necessary. 

Using Lennard-Jones'14 a for <rs, one finds that among 
some typical solvents the degree of space filling in
creases in the order CH3OH «r) = 1.3), C6H14, C6H6, 
CCl1, CHCl3 ((/•) = 1.1). There is zero P R for all 
these. The minimum ETjEA for stabilization is 0.58 
for CH3OH, 0.25 for C6H14, and 0.02 for CCl4. If 
we say that recombination will be avoided if either 
photofragment escapes the cage, we need roughly P8 = 
0.6 for I in hexane and P5 = 0.9 for I in CCl4 to match 
the laboratory data. Both these situations require 
ET/EA ^ Vs. which is unrealistically high. It would 
require that I's retaining half their initial outward radial 
kinetic energy after the first collision usually recom-
bine. For all ET/EA < V2, the theory incorrectly pre
dicts a very substantial mass effect for our Figure 6a, 
which should have a very much more efficient cage than 
in Figure 4a. Confining our attention to the immediate 
primary events (P1) does not alter this, although it 
makes the required ET more reasonable. 

It seems inescapable that we cannot attribute stabili
zation to a single encounter between photofragment 
and solvent, and that around three successive encounters 
will have to be considered, For realistic (not rigid 
sphere) potentials, it will be preferable to view the situ
ation as a single happening involving about four 
strongly interacting objects. The difficulties of making 
a theoretical model of this will be fairly severe. 

tert-buty\ alcohol,5 and pyrrole6 with a variety of oxygen 
and nitrogen donors. Anomalies from this linear be
havior have been reported for the enthalpies of reaction 
of HFIP3 and phenol7 with diethyl sulfide, while the 
spectroscopic shifts (frequency shift vs. chemical shift) 
resulting from the reaction of this donor with HFIP 

(5) R. S. Drago, N. O'Brian, and G. C. Vogel, J. Amer. Chem. Soc., 
92, 3925 (1970). 

(6) M. S. Nozari and R. S. Drago, ibid., 92, 7086 (1970). 
(7) G. C. Vogel and R. S. Drago, ibid., 92, 5347 (1970). 
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Abstract: Calorimetric enthalpy data are reported for the reactions of the acids, l,l,l,3,3,3-hexafluoro-2-pro-
panol and 2,2,2-trifluoroethanol, with six sulfur donors in CCl4 solution and four donors in hexane solution. Fre
quency shift data are also reported for the same two acids reacting with eight sulfur donors. Measurement of the 
heats of solution of each sulfur donor in both CCl4 and hexane allows us to estimate hexane enthalpies for the two 
donors whose enthalpies could not be measured directly in hexane. A comparison of oxygen and sulfur donor 
AH vs. AH and Av vs. Av equations reveals the greater importance of van der Waals repulsions in the sulfur donor 
reactions. The change in relative slopes of these equations may also be related to the greater importance of covalent 
contributions (C1^Cb term) to hydrogen bond formation with sulfur donors. The data adhere nicely to linear 
enthalpy-frequency shift relations which are considerably different from those reported previously for oxygen 
donors. A comparison of some analogous oxygen and sulfur donor frequency shifts reveals strong P-S ir bonding 
in a series of phosphine sulfides. 
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